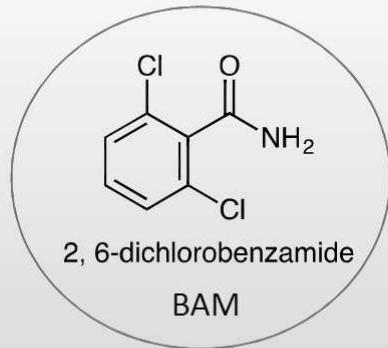


Polyacrylate Stir Bar Sorptive Extraction of 2,6-Dichlorobenzamide in Water followed by Liquid Chromatography-Tandem Mass Spectrometry

Emanuele Magi

University of Genoa
Dept. of Chemistry and Industrial Chemistry
Genoa - Italy

SBSE Technical Meeting, Paris, January 26- 27, 2015



- The study was carried out on the basis of a collaboration with SRA-Italia and a Water Company in North Italy
- The Water Company was involved in the environmental monitoring of sites presenting former contamination from dichlobenil, using 2,6-Dichlorobenzamide (BAM) as a tracer of this herbicide
- They required us to develop a fast and simple method for BAM

...from soil ...

... to water

- 2,6-Dichlorobenzamide (BAM), a metabolite of the herbicide dichlobenil is a prominent ground water contaminant in Europe
- Dichlobenil was banned in Europe in 2008, nevertheless because of its slow release from soil, its main metabolite BAM is still frequently detected in ground water reservoirs
- BAM is a highly polar molecule with a good water solubility

Why this method?

- Stir Bar Sorptive Extraction (SBSE) is a suitable technique for pre-concentration of trace water contaminants
- Polar twisters are now available for polar compounds (low logK_{ow})
- LC-MS/MS analysis offers high sensitivity and specificity

- Analysis of BAM in water has been reported using only SPE (*Auersperger, et al. 2005; Jensen, et al. 2009*): to propose an innovative method

SBSE Technical Meeting, Paris, January 26- 27, 2015

Our previous experiences with SBSE : emerging pollutants

Rapid and selective determination of UV filters in seawater by liquid chromatography-tandem mass spectrometry combined with stir bar sorptive extraction

Kieu T.N. Nguyen, Carlo Scapolla, Marina Di Carro, Emanuele Magi*

Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy

Chromatographia (2012) 75:973–982
DOI 10.1007/s10337-012-2202-z

ORIGINAL

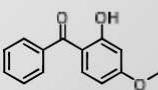
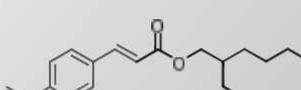
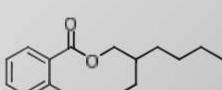
Stir Bar Sorptive Extraction and LC-MS/MS for Trace Analysis of UV Filters in Different Water Matrices

Emanuele Magi · Marina Di Carro ·
Carlo Scapolla · Kieu T. N. Nguyen

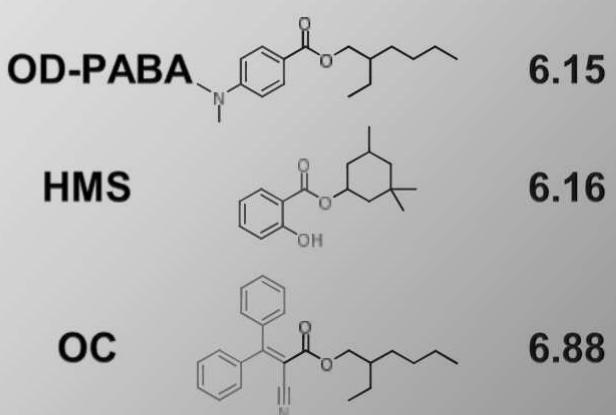
UV filters are non-polar or moderately polar molecules

SBSE Techr

Analytical Methods




PAPERS

RSC Publishing


Emerging pollutants in aquatic environments: monitoring of UV filters in urban wastewater treatment plants†

Emanuele Magi,* Carlo Scapolla, Marina Di Carro, Paolo Righi and Kieu T. N. Nguyen

SBSE & LC-MS: determination of UV filters in water

BP-3		$\log K_{OW}$	3.39
EHMC			5.80
EHS			5.97

- R^2 calibration curves : > 0.997
- RSD% withinday : < 9%
interday : <11%

- Analyte Recovery : close to 85%, except BP-3 (64%)
- Matrix effect: negligible
- LODs : 0.9 – 3.3 ng/L , except HMS, EHS (94, 114)

SBSE Technical Meeting, Paris, January 26- 27, 2015

Trends in Analytical Chemistry 54 (2014) 11–23

Contents lists available at ScienceDirect

Trends in Analytical Chemistry

journal homepage: www.elsevier.com/locate/trac

Review

New coatings for stir-bar sorptive extraction of polar emerging organic contaminants

Núria Gilart, Rosa Maria Marcé, Francesc Borrull*, Núria Fontanals

Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Campus Sesceletes Marcel·lí Domingo, s/n, 43007 Tarragona, Spain

“...there has been growing interest in developing more polar in-house coatings for SBSE and, therefore, extend the applicability of this sorptive extraction technique...”

“...very recently, SBSE stir bars with polar coatings were marketed by Gerstel...”

Two commercial new coatings: Acrylate and EG Silicone

- both Twisters are PDMS-based phases
- enhancement of polarity is due to hydroxyl (PEG) and ester groups (PA)

SBSE Technical Meeting, Paris, January 26- 27, 2015

Structures and applications of commercial new coatings

Table 1

Structures and application of novel commercially available coatings for stir-bar sorptive extraction (SBSE)

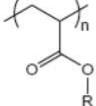
Coating Phase*	Structure	Analyte	Matrix	Sampling Mode	Desorption	Analysis	Ref.
PDMS (Twister®)			Food and	Immersion/			

PA (Acrylate Twister®)

CH₃CH₃

VOCs

Food and cosmetic


Immersion/HS

TD

GC-MS

[18]

PEG (EG Silicone Twister®)

PA and PDMS-based (Acrylate Twister®)

PDMS (Twister®)

PEG and PDMS-based (EG Silicone Twister®)

PA (Acrylate Twister®)

PPCPs

Wastewater

Immersion

LD

LC-MS/MS

[19]

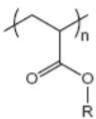
PEG (EG Silicone Twister®)

PEG and PDMS-based (EG Silicone Twister®)

PEG (EG Silicone Twister®)

Bisphenols

PCPs


Immersion

TD

GC-MS

[20]

PA (Acrylate Twister®)

PA and PDMS-based (Acrylate Twister®)

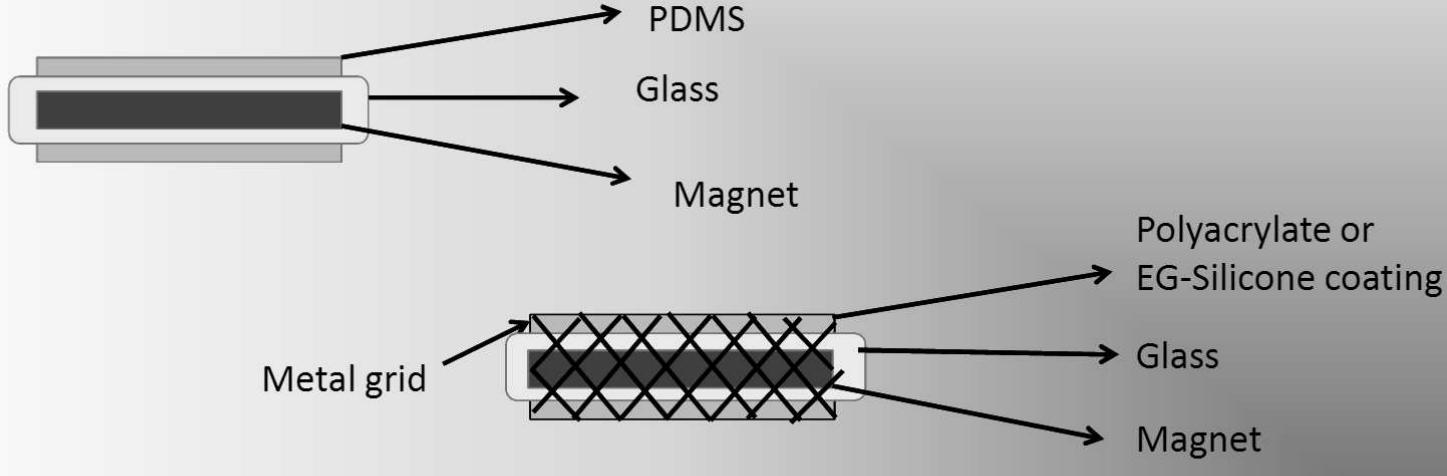
Benzothiazole

Untreated wastewater

Immersion

TD

GC-MS

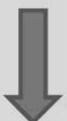

[17]

GC-MS, Gas chromatography-mass spectrometry; HS, Headspace; LD, Liquid desorption; LC-MS/MS, Liquid chromatography-tandem mass spectrometry; PA, Polyacrylate; PCP, Personal-care product; PEG, Poly(ethylene)glycol; PPCP, Pharmaceuticals and personal-care product; TD, Thermal desorption; VOC, Volatile organic compound

*Commercial name in brackets

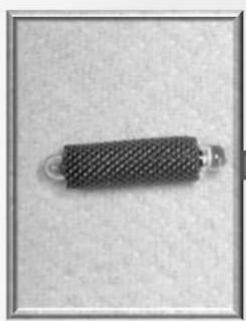
SBSE Technical Meeting, Paris, January 26- 27, 2015

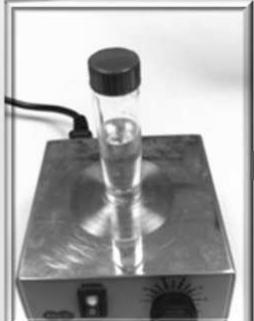
GERSTEL		PDMS Twister	EG Silicone Twister
Phase	Polydimethylsiloxane (PDMS)	PDMS / Ethylene glycol (EG) - copolymer on an inert metal grid for mechanical stabilization	
Enrichment	For apolar compounds $\log(K_{ow}) > 4$	For apolar compounds and polar compounds presenting low $\log(K_{ow}) < 4$ and form H-bonding	



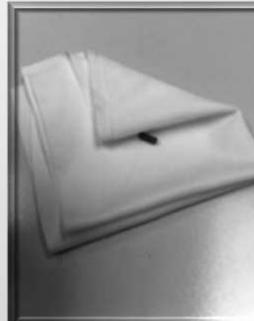
Gerstel and SRA Italia provided some polyacrylate and ethylene glycol-silicone Twisters to test

(10 mm long, 0.5 mm phase thickness)


BAM has a $\log K_{o/w} = 0.77$


A polar phase is required to extract BAM from water

SBSE Technical Meeting, Paris, January 26- 27, 2015


Twister conditioning and extraction

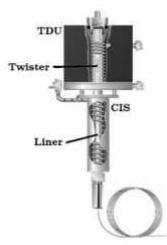
Polar Twister

Stir in solvent

Wipe out

Stir in water sample

... and now ?


SBSE Technical Meeting, Paris, January 26- 27, 2015

SBSE: TD and LD, two ways to recover the analytes

Thermal desorption

GC-MS

TDU-CIS

Liquid desorption (*back-extraction*)

GC-MS

HPLC-MS

Advantages:

- Fully automated
- Solvent free
- High sensitivity

Shortcomings:

- One-shot
- GC only

Advantages:

- Replicates
- GC, LC and ...
- Cheap

Shortcomings:

- manual step
- time

SBSE Technical Meeting, Paris, January 26- 27, 2015

Instruments & conditions

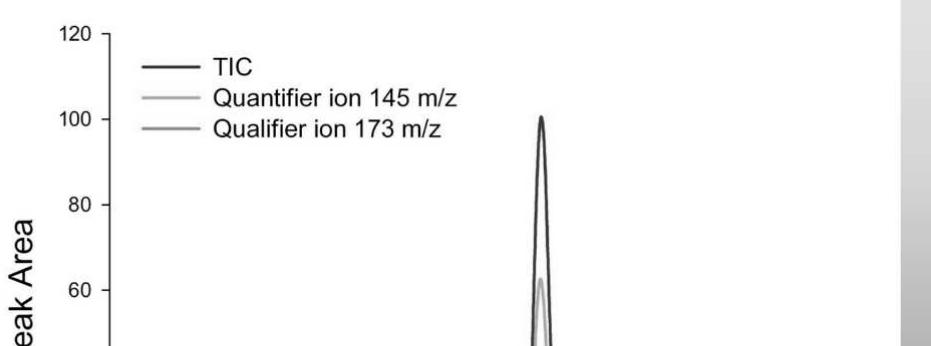
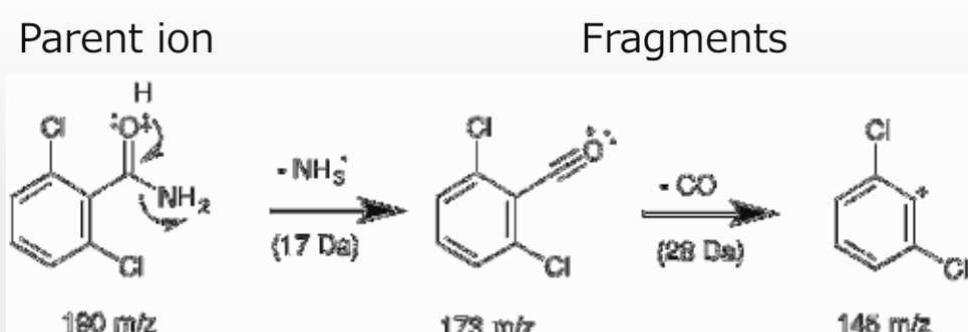
HPLC Agilent 1200 SL

ZORBAX Agilent Technologies

XDB-C₁₈ : 50x4.6mm 1.8µm

MS Agilent 6430 QQQ

Injection: 10 µL
Flow: 0.4 mL/min
Temperature : 30 °C



MS experimental conditions

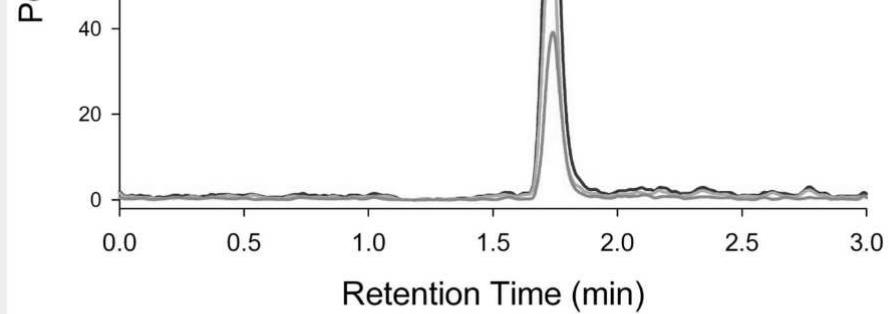
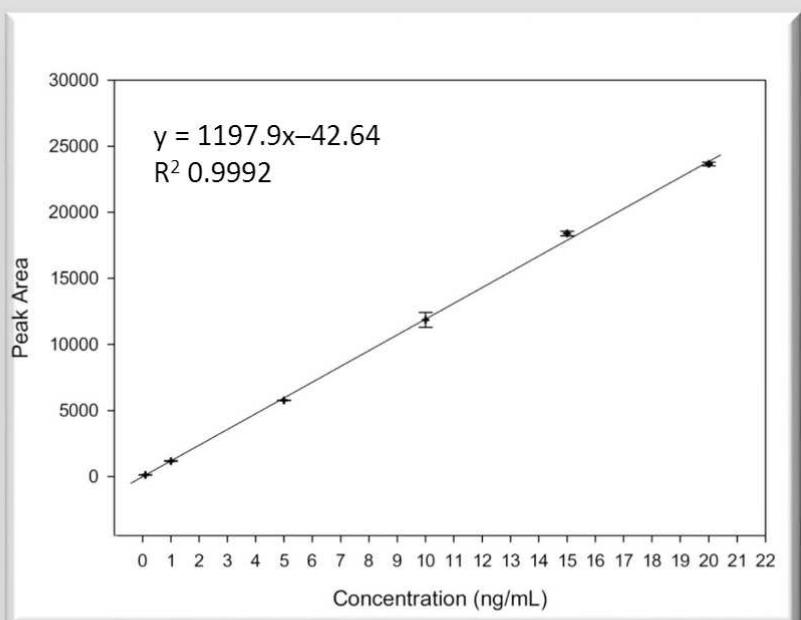
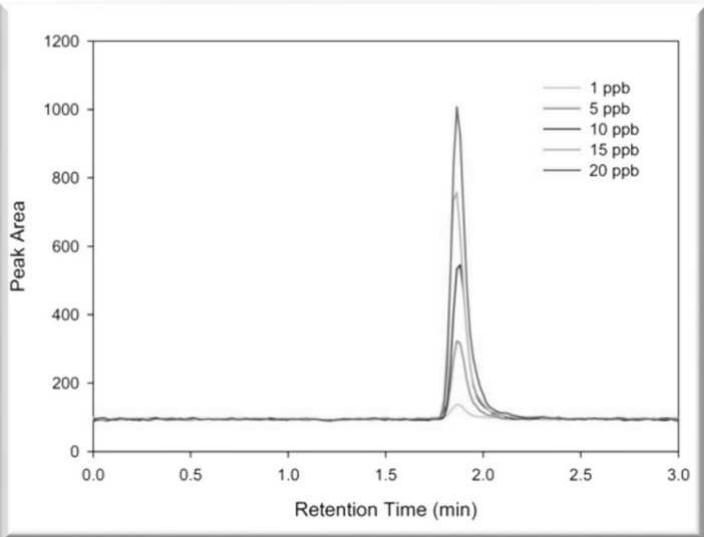

- Ionization: ESI+
- MS/MS acquisition mode: MRM

Table 1 Physical properties, structure, analytical relevant data of BAM and optimized LC-ESI-MS conditions

Name	Abbreviation	Empirical formula	Mw (g/mol)	Structure	Log K _{o/w}
2,6-Dichlorobenzamide	BAM	C ₇ H ₅ NOCl ₂	190.03		0.77
MS parameters					
RT ^a (min)	IM ^b	[M+H] ⁺	PI ^c	DT ^d	FV ^e
1.72	Positive	190	173, 145	500	135
					CE ^f
					CAV ^g
				30	7

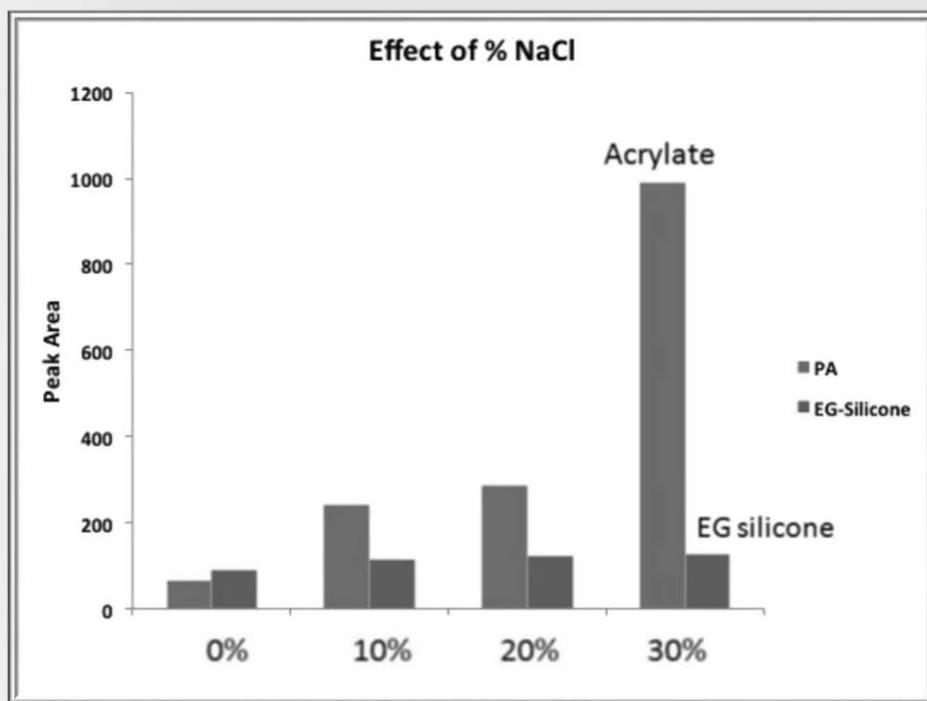


^aRetention time; ^bIonization mode; ^cProduct ions; ^dDwell time (ms); ^eFragmentor voltage; ^fCollision energy; ^gCell acceleration voltage

SBSE Technical Meeting, Paris, January 26- 27, 2015

MS: quantitative analysis

SBSE Technical Meeting, Paris, January 26- 27, 2015

SBSE-LD: main parameters to be optimized


- ionic strength (and pH)
- stirring speed and time

- sample volume
- liquid desorption solvent
- LD method (stirring or sonication) and time

SBSE Technical Meeting, Paris, January 26- 27, 2015

SBSE-LD: ionic strength effect

- Both the polar PA and EG silicone Twisters tested, spiking a water sample (analyte-free) with 1 ng mL^{-1} of BAM.
- Four concentration levels of NaCl (0, 10, 20 and 30% w/v), other variables constant (*sample volume 5 mL, stirring speed 500 rpm, and stirring time 4 h*)

SBSE Technical Meeting, Paris, January 26- 27, 2015

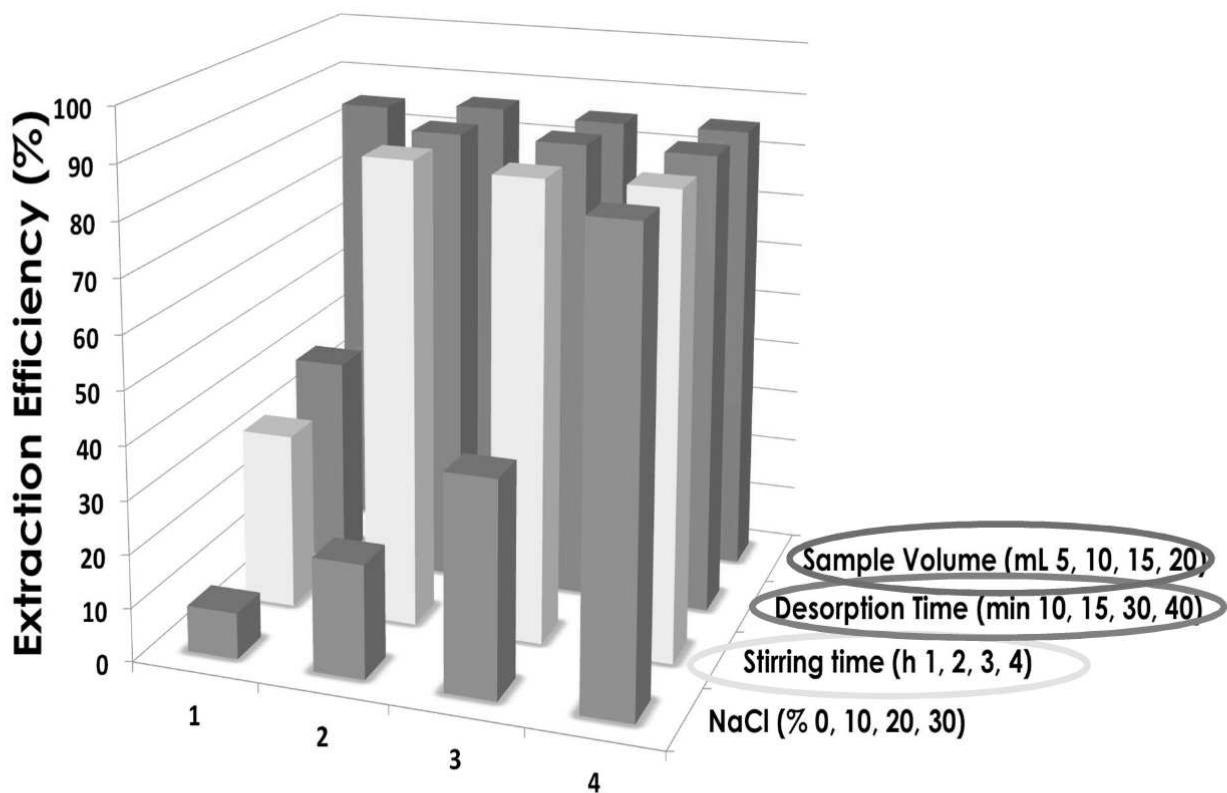
SBSE-LD: main parameters to be optimized

EG silicone was abandoned (*extraction of BAM < 15%*) :

a thorough optimization of the extraction method was carried out using polyacrylate Twister

- ionic strength (and pH)
- stirring speed and time
- sample volume
- liquid desorption solvent
- LD method (stirring or sonication) **and time**

SBSE Technical Meeting, Paris, January 26- 27, 2015


Liquid desorption

- Literature data suggested that LD by ultra sonication accelerates analyte desorption from the stir bar (*)
- In our experiments, stirring was extended up to 4 hours but provided a back-extraction efficiency close to 20%, so it was discarded
- LD was then performed by sonication

(*) GIORDANO A., FERNANDEZ-FRANZON M., RUIZ M.J., FONT G., and PICO Y., Pesticide residue determination in surface waters by stir bar sorptive extraction and liquid chromatography/tandem mass spectrometry, *Anal. Bioanal. Chem.*, 2009, 393, 1733-1743.

SBSE Technical Meeting, Paris, January 26- 27, 2015

SBSE Technical Meeting, Paris, January 26- 27, 2015

Extraction and desorption procedure

Twister in vial containing 15 ml water spiked with 1ppb of BAM

add 30% NaCl

stirred 2h at RT, 500 rpm

Twister taken out, rinsed with water, dried with lint free tissue

Twister in 1 ml LC vial and 0.5 ml acetonitrile was added

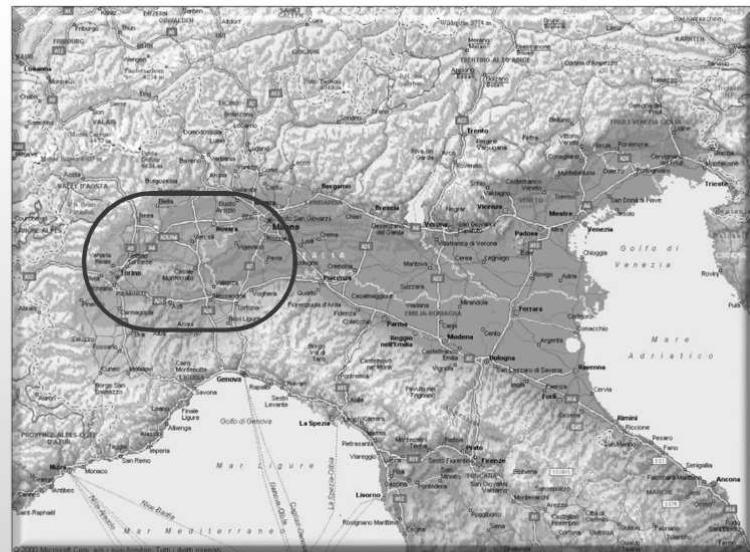
desorbed under ultrasonication for 15 min

Twister taken out, washed with water 2-3 times

solution analyzed by LC-MS/MS after adding 0.5 ml water

Repeatability

(n= 5)


BAM conc. ($\mu\text{g L}^{-1}$)	RSD (%)	
	Intra-day	Inter-day
0.1	1.5	5.6
1	2.6	7.1
5	3.3	9.7
10	1.9	9.6
15	1.3	9.6
20	0.9	2.7

SBSE Technical Meeting, Paris, January 26- 27, 2015

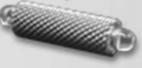
Figures of merit

BAM	SBSE-LD LC-MS/MS
Recovery	86 %
Preconcentration factor	15:1
LOD	2.0 ng L^{-1}
LOQ	6.6 ng L^{-1}
RSD intra day	< 5 %
inter day	< 10 %
Linear range	0.1 – 20 $\mu\text{g L}^{-1}$

Groundwater samples

Water samples	BAM conc. ($\mu\text{g L}^{-1}$)	RSD (%)
1	0.161	4.0
2	0.282	6.1
3	0.103	13.8
4	0.168	4.3
5	0.070	2.5

Preliminary tests to extend method to other polar pesticides


Nine pesticides chosen from a priority list of the most widespread pesticides in Northern Italy:

metolachlor, penconazol, alachlor, linuron, prometryn, terbutylazine, propazine, ametryn, atrazine

Range of $\log K_{\text{o/w}}$ of selected pesticides: **2.6 - 4.7**

Quantitative analysis was performed by LC-MS/MS using the method previously developed in our lab (*).

method previously developed in our lab ()

Both polyacrylate and ethylene glycol-silicone twisters were tested
... but ~~polyacrylate~~

(*) Bono L., Magi E., "Fast and Selective Determination of Pesticides in Water by Automated on-Line Solid Phase Extraction Liquid Chromatography Tandem Mass Spectrometry", Analytical Letters, 2013, 46, 1467-1476
SBSE Technical Meeting, Paris, January 26- 27, 2015

Preliminary tests to extend method to other polar pesticides

Similar optimization of EG-silicone Twister to that previously described for BAM

In optimized conditions (stirring speed 500 rpm, time 2 h, sample volume 20 mL, ultrasonic desorption 30 min with methanol):

- Extraction efficiency in the range 50 - 80%
- Linearity in the range 5-250 ng L⁻¹, R² 0.993-0.998
- LOD 1.6-25.5 ng L⁻¹, LOQ 5.2-43.7 ng L⁻¹
- Inter-day RSD below 10%

Altough preliminary, results indicate that EG-silicone can be successfully employed for trace level determination of polar pesticides (logK_{o/w} 2.6 - 4.7) in water

SBSE Technical Meeting, Paris, January 26- 27, 2015

Pesticides detected in groundwater samples

Real Samples	Concentration in µg L ⁻¹					
	MET	PEN	ALA	TER	ATR	RSD%
1	<LOD	<LOD	<LOD	<LOD	<LOD	-

2	0.049	0.052	0.056	<LOD	<LOD	4.4-8.1
3	0.033	0.040	<LOD	0.059	0.075	3.8-11.2
4	0.032	0.033	<LOD	0.053	0.092	4.5-9.8
5	<LOD	<LOD	<LOD	<LOD	0.061	5.7

MET: metolachlor, PEN: penconazol, ALA: alachlor, TER: terbutylazine, ATR: atrazine

SBSE Technical Meeting, Paris, January 26- 27, 2015

G Model
PBA-9778; No. of Pages 7

ARTICLE IN PRESS

Journal of Pharmaceutical and Biomedical Analysis xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journal homepage: www.elsevier.com/locate/jpba

New Methods

Innovative sampling and extraction methods for the determination of nonsteroidal anti-inflammatory drugs in water

Shivani Tanwar, Marina Di Carro, Emanuele Magi*

Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy

ical and Biomedical Analysis xxx (2014) xxx-xxx

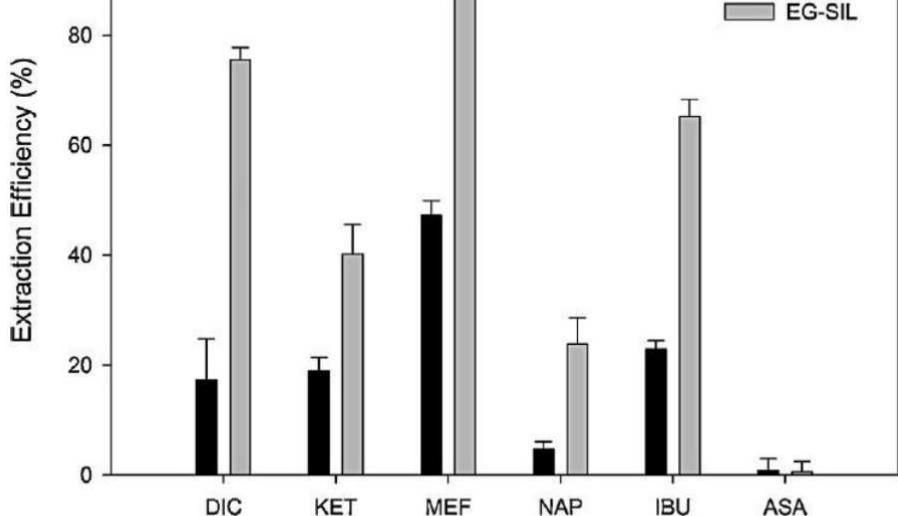
3

Table 1
Analyte structures and LC-ESI-MS/MS conditions in MRM mode. Negative ionization and cell acceleration voltage = 7 were used for all analytes).

Analyte	Structure	Log K_{ow}	RT ^a (min)	Precursor ion	Product ion		DT ^b	FV ^c	CE ^d
					Quantifier	Qualifier			
ASA		1.19	1.2	179	137	-	80	70	0
KET		3.12	1.8	253	209	197	70	70	2
NAP		3.18	1.9	229	185	169	100	79	5
DIC		4.51	3.1	294	250	214	100	80	5
IBU		3.97	3.5	205	161	159	100	75	2
MEF		5.12	4.6	240	196	192	100	91	5

^a Retention time.

^b Dwell time (ms).


^c Fragmentor voltage.

^d Collision energy.

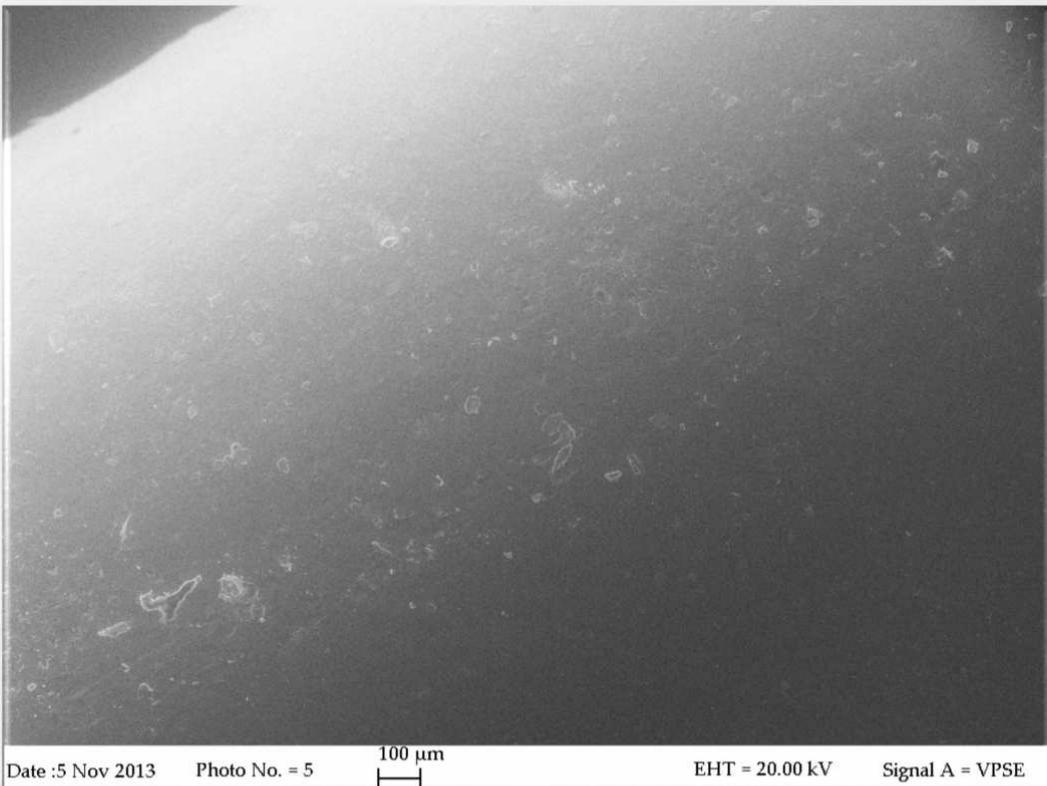
Extraction efficiency of NSAIDs PDMS vs. EG-silicone

100

PDMS

Fig. 2. Extraction efficiencies of NSAIDs obtained with EG-Silicone and PDMS (optimized methods).

SBSE Technical Meeting, Paris, January 26- 27, 2015


Twister Robustness

- PDMS Twister lifetime is about 50 cycles (extraction & desorption)
- In our experiments, polar stir bars exhibited an average lifetime of about 25 cycles
- Probably the stirring is not as smooth as for PDMS, thus affecting negatively the robustness of polar stir bars

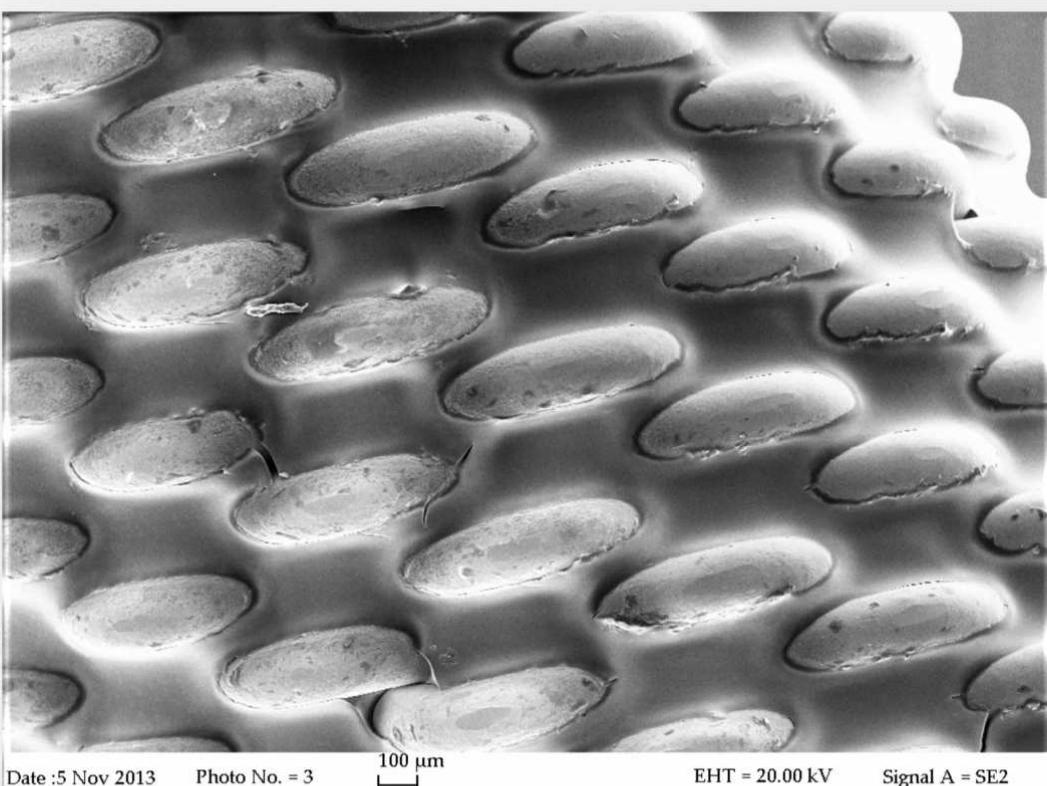
SBSE Technical Meeting, Paris, January 26- 27, 2015

Twister Robustness

PDMS Twister after 20-25 cycles

Date : 5 Nov 2013

Photo No. = 5


100 μm

EHT = 20.00 kV

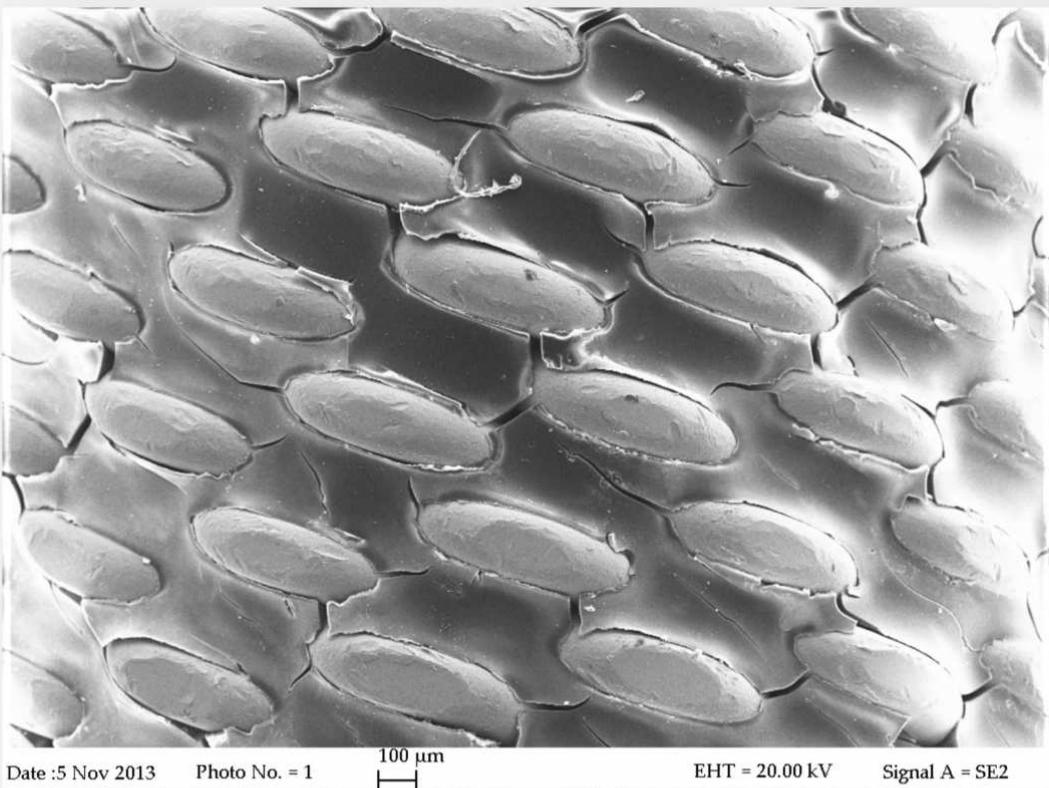
Signal A = VPSE

SBSE Technical Meeting, Paris, January 26- 27, 2015

PA almost new

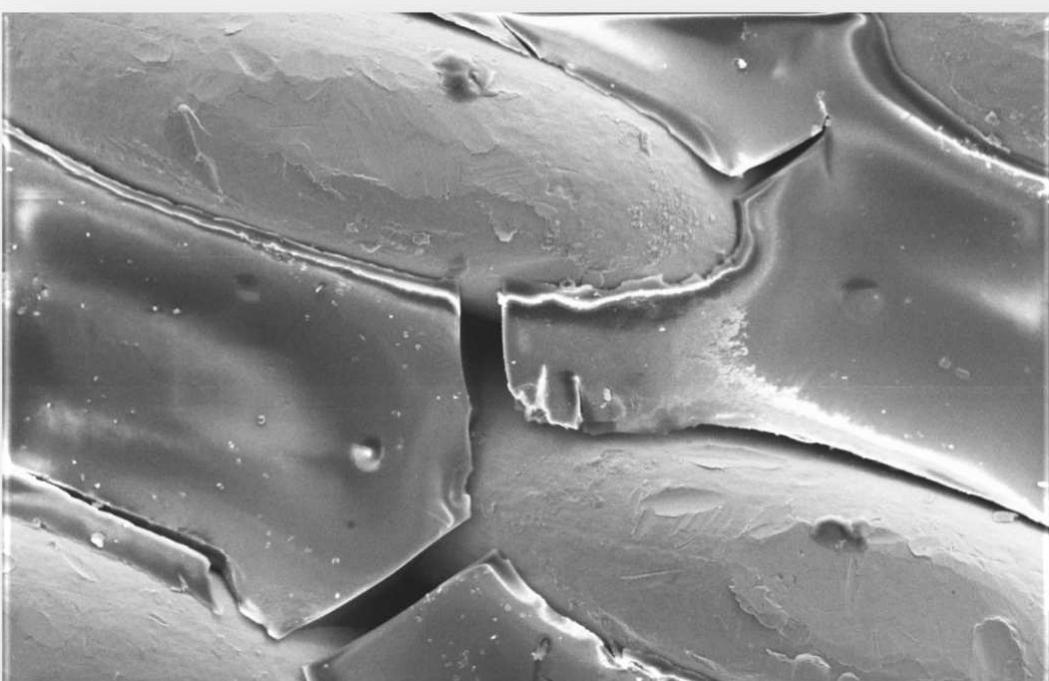
Date : 5 Nov 2013

Photo No. = 3


100 μm

EHT = 20.00 kV

Signal A = SE2


SBSE Technical Meeting, Paris, January 26- 27, 2015

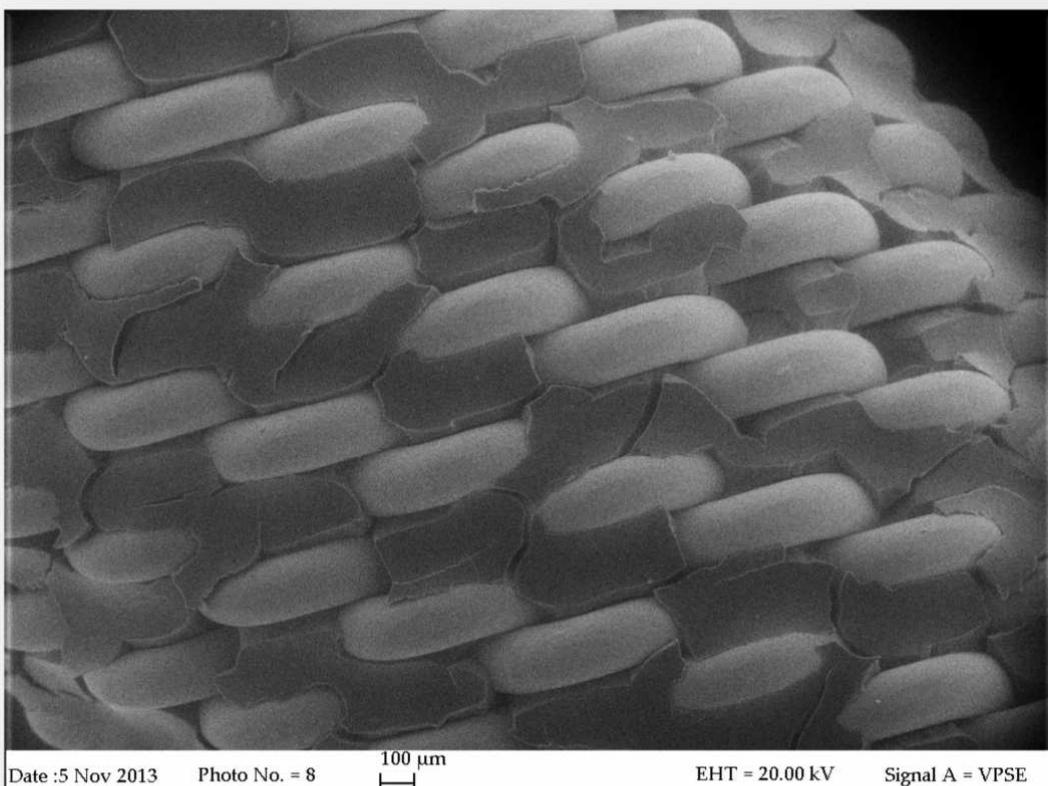
PA after 25 cycles

SBSE Technical Meeting, Paris, January 26- 27, 2015

PA after 25 cycles

Date : 5 Nov 2013

Photo No. = 2


20 μm

EHT = 20.00 kV

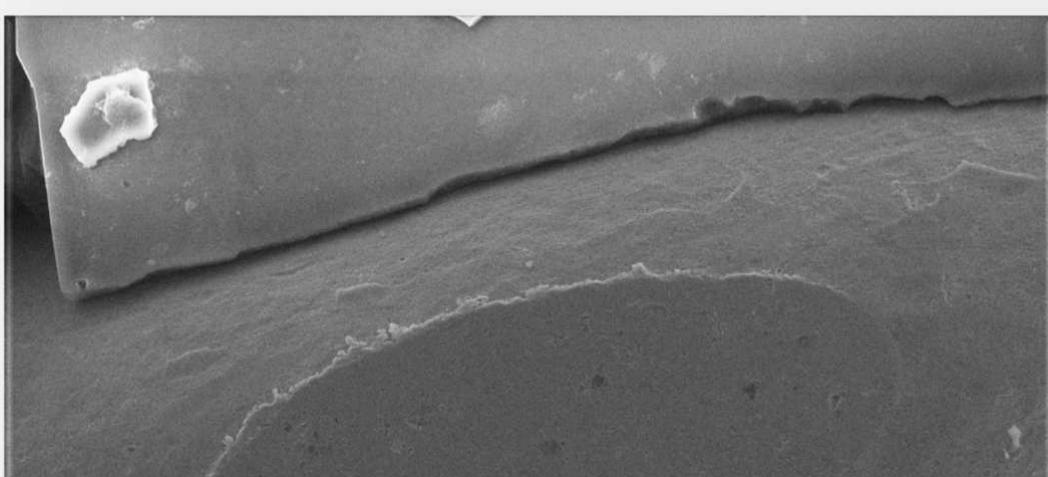
Signal A = SE2

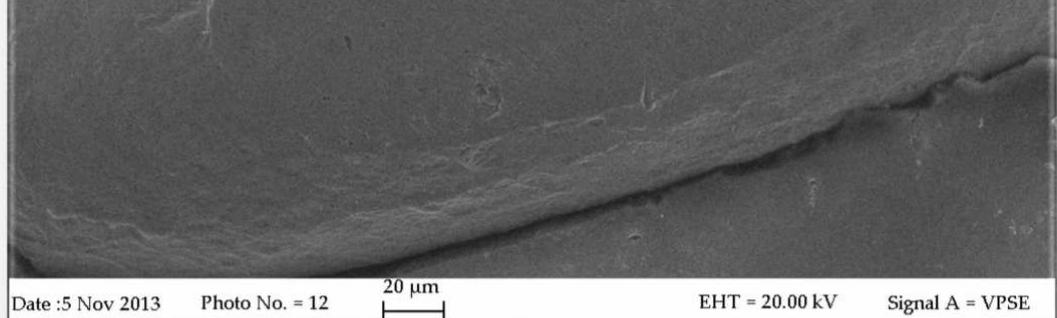
SBSE Technical Meeting, Paris, January 26- 27, 2015

EG Silicone after 20-25 cycles

Date : 5 Nov 2013

Photo No. = 8

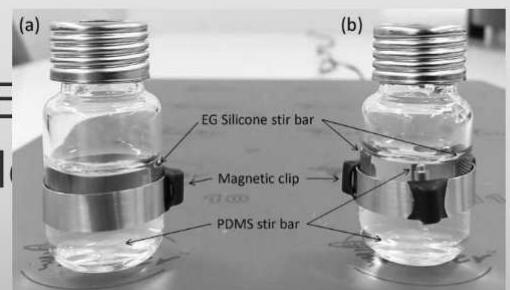

100 μm


EHT = 20.00 kV

Signal A = VPSE

SBSE Technical Meeting, Paris, January 26- 27, 2015

EG Silicone after 20-25 cycles



SBSE Technical Meeting, Paris, January 26- 27, 2015

Twister Robustness

- Stirring is responsible for mechanical stress of coating, we don't know how much it compromise the extracting power of the Twister and its lifetime
- Ochiai, et al. 2013 (*) reported for EG silicone stir bar a lifetime of 30 cycles using a "non-stirring" Twister
- Further studies are necessary for a better understanding and to enhance the robustness of polar Twister ... a challenging task for material scientists and manufacturers

(*) Ochiai, N., K. Sasamoto, T. Ieda, F. David and P. Sandra. 2013. Multi-stir bar sorptive extraction for analysis of odor compounds in aqueous samples. *J. Chromatogr. A* 1315: 70-79.

SBSE Technical Meeting, Paris, January 26- 27, 2015

Acknowledgments

Marina Di Carro, PhD
Shivani Tanwar, PhD

SRA Instruments Italia
Gerstel GmbH Germany
Veolia

SBSE Technical Meeting, Paris, January 26- 27, 2015

Thanks for your attention

SBSE Technical Meeting, Paris, January 26- 27, 2015