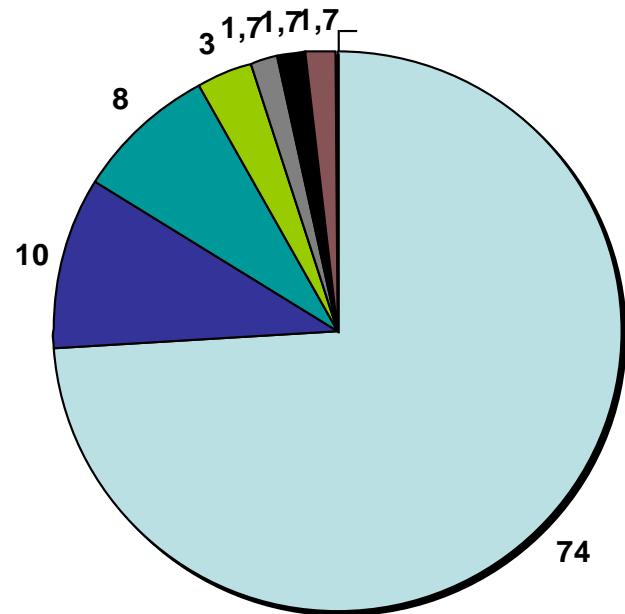
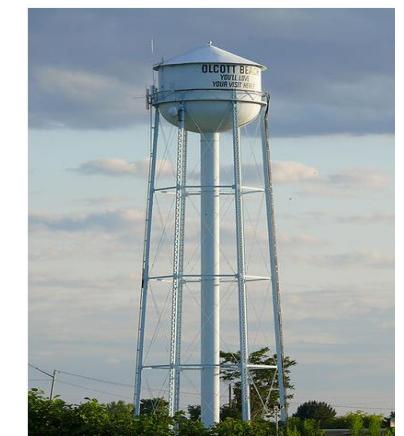
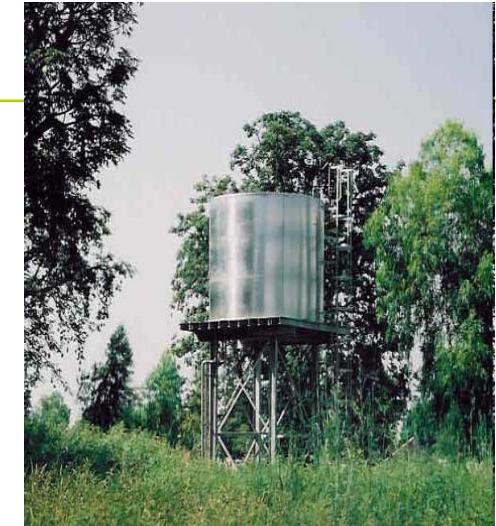


HEALTH AND ORGANOLEPTIC RISKS FROM BISPHENOL A LEACHED FROM EPOXY RESINS

NOYON[®], BRUCHET.A
CIRSEE
SUEZ-ENVIRONNEMENT



S'ENGAGER
POUR LA PLANÈTE
EST UNE BELLE
ENTREPRISE

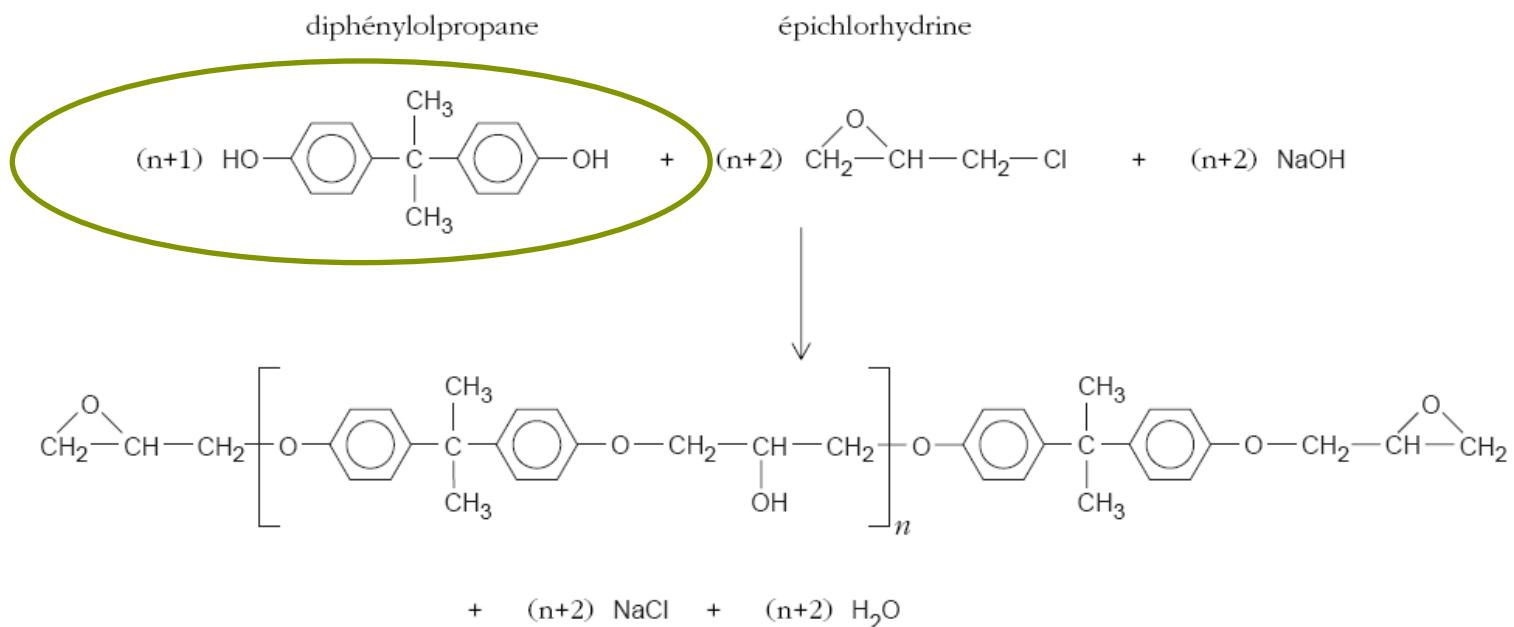
CONTEXT

- epoxy resins
- cement based coatings
- vinyl and acrylic coatings
- rubber plus bituminous sheets
- inorganic products
- bituminous mastic
- poluuréthane
- Secteur 8

Examination of the lists of approved coatings in France and USA, indicates that epoxies still represent about 50% of approved coatings in 2010. Also used in UK, Spain and Germany

CONTEXT

A taste-and odour episode that occurred in the Bordeaux area (2008, 2011) showed that a 10 year old epoxy lining (ClO₂) had completely failed and released bisphenol A, leading to chlorinated phenols and anisoles with taste-and odour complaints-Pink colour also observed


CONTEXT

Epoxies are produced by reaction of bisphenol A with epichlorohydrin in the presence of sodium hydroxyde

Bisphénol A

Epichlorydrine

Soude

If $n=1$, compound is called BADGE

CONTEXT

Chlorination of bisphenol A in aqueous media: formation of chlorinated bisphenol A congeners and degradation to chlorinated phenolic compounds

Takashi Yamamoto ^{*}, Akio Yasuhara

Regional Environment Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan

Received 11 December 2000; received in revised form 31 August 2001; accepted 18 September 2001

➤ Organoleptic risk

BPA

2,4,6 Trichlorophenol

2,4,6 Trichloroanisol
(musty)

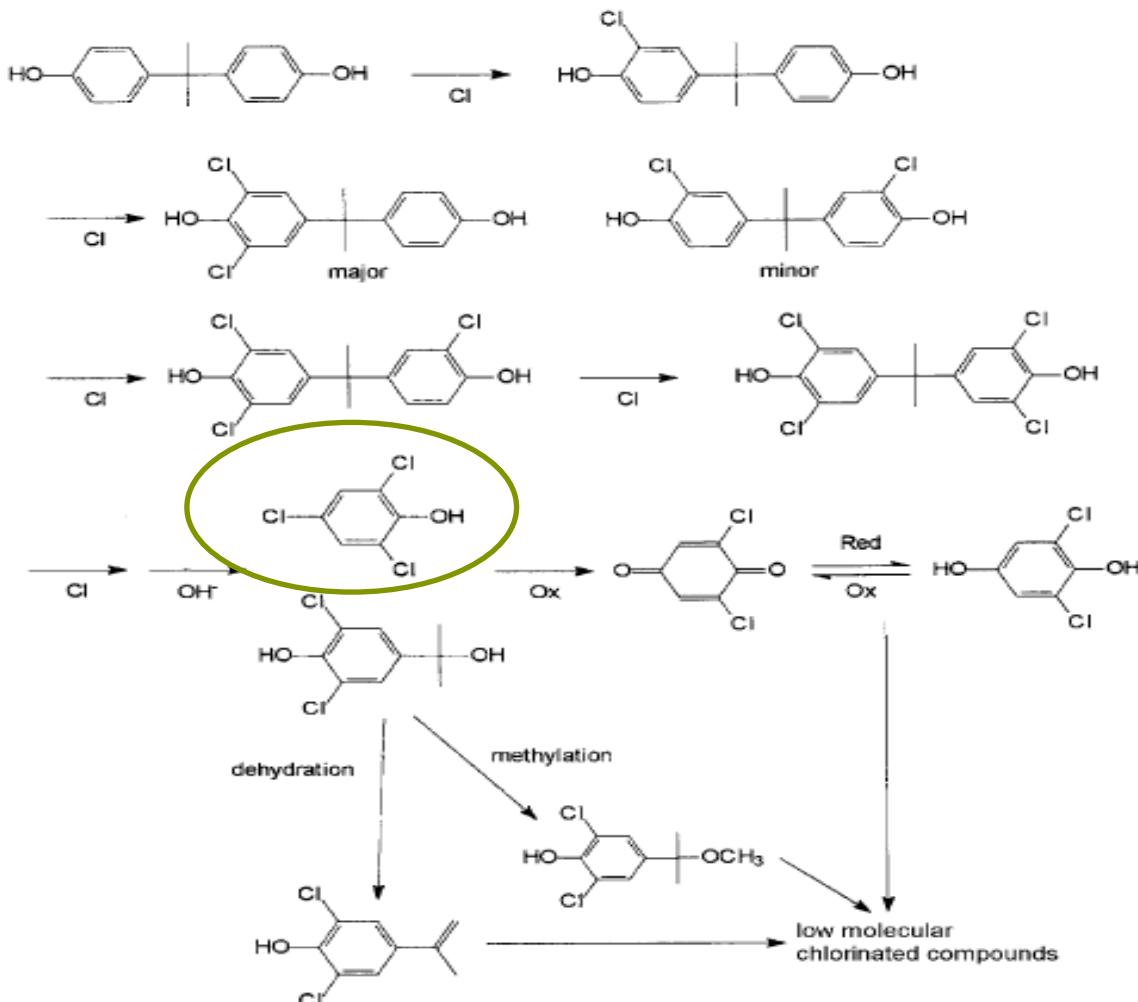


Fig. 5. Presumed chlorination reaction scheme of BPA.

³Yamamoto, T., Yasuhara, A. 2002. Chlorination of bisphenol A in aqueous media: formation of chlorinated bisphenol A congeners and degradation to chlorinated phenolic compounds. *Chemosphere*, 46, 1215-1223

CONTEXT

➤ Health risk

The discovery that baby drinking bottles can leach bisphenol A, a known endocrine disruptor, has raised an intense public issue in the US then in Europe. Bisphenol A has been forbidden for this use in various countries (Canada, France: june 2010)

Bisphenol A, a High Production volume chemical (2.2 million tons in 2003) is primarily used for the synthesis of polycarbonate and epoxy polymers.

Public attention has been focused on the release of bisphenol A by baby bottles and food cans. Not aware of bisphenol A polymers introduced in drinking water distribution systems.

Lots of new publications indicate that BPA has effects at low doses, including on prostate weight, obesity, childhood behaviour

New Anses report recognizes effects of BPA on animals and suspects effects on humans, even at low doses.

In 2015 a French rule stopped the bisphenol A in all products for food contact

OBJECTIVES

- **Study the leaching of bisphenol A, bisphenol F and other organics from 3 new epoxies approved in France, Spain, UK and the USA**
- **Check that initial contact period does not expose consumer to high levels of BPA**
- **Carry out analytical campaigns at real sites with epoxies (storage tanks and rehabilitated pipes)**

ANALYTICAL METHOD

In situ acetylation of phenols followed by SBSE (Stir Bar Sorptive Extraction)-thermal desorption-GC/MS

Instrumentation :

GC Agilent 7890

RX i 5MS Restek Colum

Acquisition mode : Single Ion Monitoring (SIM)

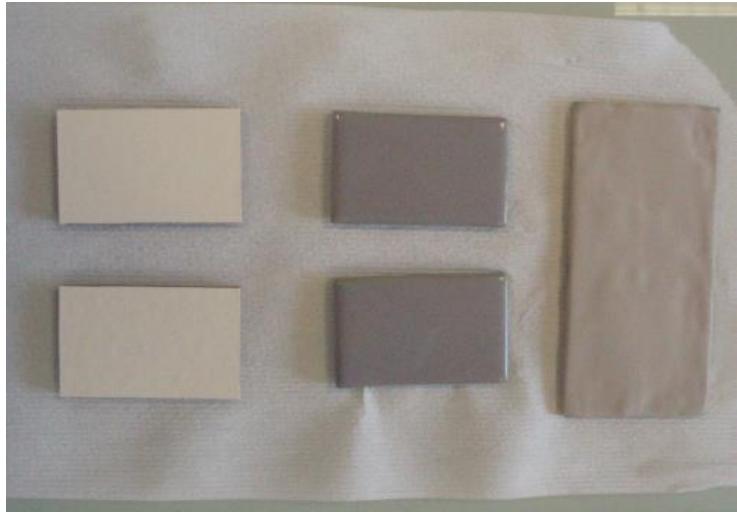
The Stir-bar is then thermally desorbed into a

heated GC injection port connected to a MS detector

SAMPLE PREPARATION

- Add 2 g K_2CO_3
- 100 ml of sample + IS
- 1 ml acetic anhydride (Ac_2O)

- Add stir bar and agitate at 550 rpm during 1 hour



- Dry stir bar with paper and desorb

Composés	Fragment 1 (masse)	Fragment 2 (masse)
PCP C13	272	
2 Chlorophénol	128	130
3 Chlorophénol	128	130
4 Chlorophénol	128	130
2 isopropylphénol	121	136
3 isopropylphénol	121	136
4 isopropylphénol	121	136
2,6 Dichlorophénol	162	164
2,4 et 2,5 Dichlorophénol	162	164
3,5 Dichlorophénol	162	164
2,3 Dichlorophénol	162	164
3,4 Dichlorophénol	162	164
2,4,6 trichlorophénol	196	160
2,3,6 trichlorophénol	196	160
2,3,5 trichlorophénol	196	160
2,4,5 trichlorophénol	196	160
2,3,4 trichlorophénol	196	160
3,4,5 trichlorophénol	196	160
BPA C13	225	
Bisphénol F	200	242
Bisphénol A	213	228

LoQ : 10ng/L

IMMERSION TEST PRELIMINARY TEST

- Surface/Volume ratio:

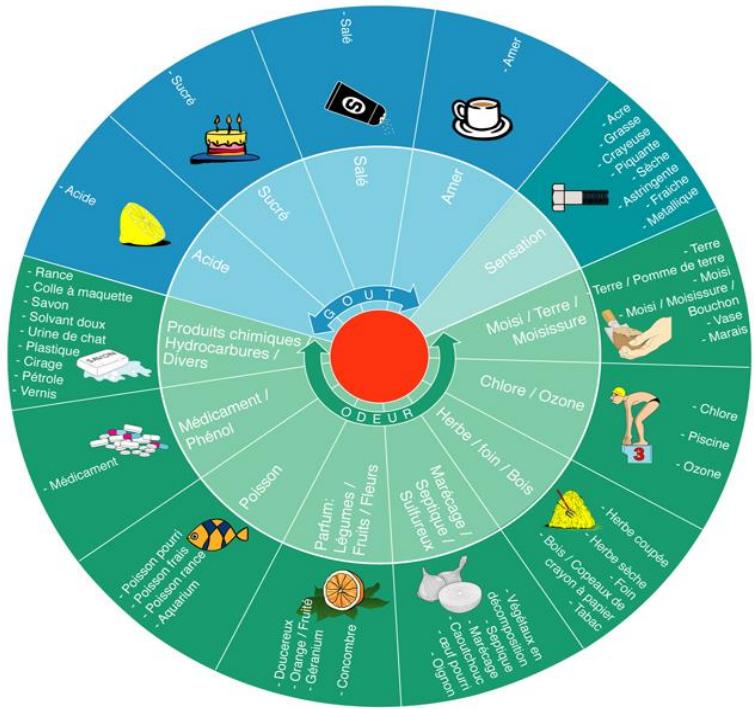
- E1 : 50 cm²/L , 1 test panel in 1.3 L
- E2 and E3 : 40 cm²/L 2 test panels in 1.2 L

- contact time : 24 h ± 1 h

- immersion T° : 21 ° C ± 2° C

- Static condition, protected from light.

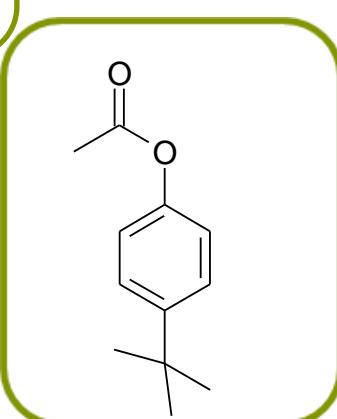
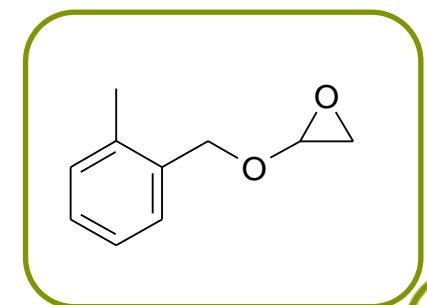
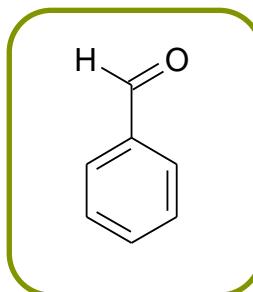
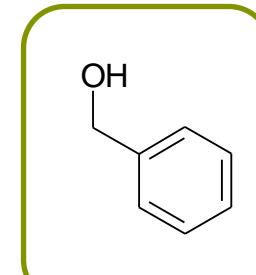
After 24 h of contact,
Sampling of several
aliquots :


Determination of chlorine residual : 10 mL

- SBSE + GC/MS analysis (modes Full Scan et SIM) : 100 mL
• organic profile : liquid-liquid extraction 1 L with CH₂Cl₂

Flavor Profile Analysis : 1 L

FLAVOR PROFILE ANALYSIS RESULTS





Objective : Determine the organoleptic characteristics of contact water (taste and odour)

- Jury of five panellists
- FPA Method :
- Odor at 45 ° C and taste at 25 ° C
- Prior dechlorination of waters with L-ascorbic acid at 5,0 g/l

	Taste		Odor	
Epoxy	No chlorine	With chlorine	No chlorine	With chlorine
E1	Hydrocarbon (6)	Chemical (4)	Hydrocarbon (6)	Chemical (4)
		(plastic, varnish)		(plastic, varnish)
E2	-	Chemical (2)	-	-
E3	Biogas (7)	Plastic-chemical (6)	Biogas (5)	Chemical(5)
	Hydrocarbon		Hydrocarbon	(paint, varnish)

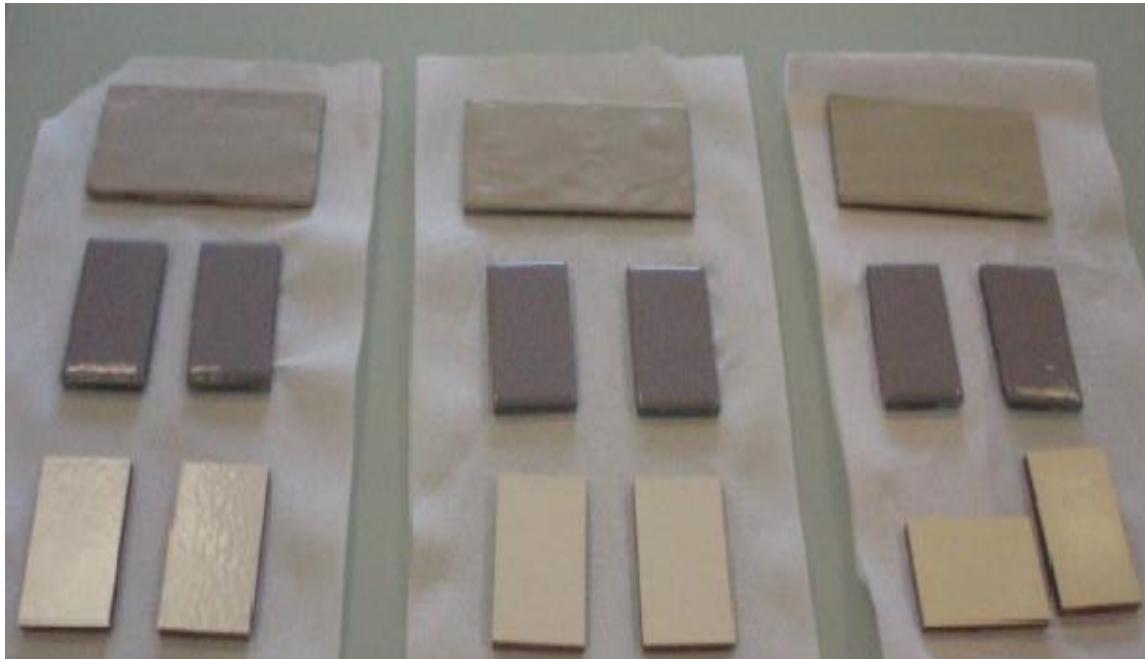
ORGANIC PROFIL

Liste des composés relargués	J1 (µg/L)	J3 (µg/L)	J1 (µg/L)	J3 (µg/L)	
Epoxy E1		Sans Chlore		Avec Chlore	
Benzaldéhyde	Cet échantillon n'a pas pu être analysé		2	-	
N,N- Diethylcarbamicchloride			0,5	-	
Dibutyl Phtalate			2,4	0,2	
Benzophénone			0,2	0,4	
Epoxy E2		Sans Chlore		Avec Chlore	
Alcool Benzylque	140	1	96	87	
O-cresolglycidylether	1,4	0,2	-	-	
Epoxy E3		Sans Chlore		Avec Chlore	
Benzaldéhyde	3	Aucun composé visible	2,8	-	
Diéthylèneglycol	1,1		-	-	
Alcool Benzylque	12		8,1	0,97	
Methoxy Phénol	6,8		1,2		
Tert-ButylPhénol	0,6		0,2	-	
Vanilline	9,8		1,4	-	
Chlorovanilline			2,2	-	
Diethyl Phtalate	0,9		7,1	1,4	
Propane, 1-(dodecyloxy)-2,3-epoxy	2,9		2,3	-	
4-Hydroxy-3,5-dimethoxybenzaldéhyde	1,3		-	-	
Benzophénone	0,8		1,4	-	
N,N- Diethylcarbamicchloride	-		-	1,8	

IMMERSION TEST

Immersion test :

March –August


S/V 40-50 cm²/L

**Contact time 24 h, at
20° C**

**Series 1: Without
disinfectant**

Series 2: 0,5 mg/l Cl

Series 3: 0,25 mg/l ClO₂

2 MODELES DE TITRE

Modèle 1 : PHOTO A CHANGER DANS LE MASQUE

Modèle 2 : FOND VERT voir DIAPO SUIVANTE

S'ENGAGER
POUR LA PLANÈTE
EST UNE BELLE
ENTREPRISE

A close-up photograph of a construction worker with dark hair and a mustache, wearing an orange high-visibility vest over a dark shirt. He is smiling and looking towards the camera. The background shows a brick wall and some construction equipment.

2 MODELES DE TITRE

Modèle 1 : PHOTO A CHANGER DANS LE MASQUE

Modèle 2 : FOND VERT voir DIAPO SUIVANTE

S'ENGAGER
POUR LA PLANÈTE
EST UNE BELLE
ENTREPRISE

FIELD SAMPLING: TANKS

27 tanks sampled in Paris area (CRY, SEVESC and ESP), from 60 to 2000 m³, most recent renovation: 2010

RESERVOIRS	RESERVOIRS DU CRY							
	R12	R13	R14	R15	R16	R17	R18	R19
Volume (m ³)	200	500	2000	800	1000	4500	1100	1100
Cl total (mg/l)	0,09	0,17	0,31	0,18	0,24	0,4	0,4	0,39
Cl libre (mg/l)	0,05	0,12	0,19	0,11	0,2	0,35	0,4	0,37
Date de pose	-			nov-10			-	
Concentration (ng/l)								
2 Chlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
3 Chlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
4 Chlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2 isopropylphénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
3 isopropylphénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
4 isopropylphénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2,6 Dichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2,4,2,5 Dichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
3,5 Dichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2,3 Dichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
3,4 Dichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2,4,6 trichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2,3,6 trichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2,3,5 trichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2,4,5 trichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
2,3,4 trichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	13	<LoQ
3,4,5 trichlorophénol	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
Bisphénol F	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ
Bisphénol A	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ	<LoQ

No bisphenols and no degradation by-products detected

FIELD SAMPLING: PIPES

20 pipes from the Bordeaux area. Selection of results

Pipe N°	119	19	38	45	31	20	99
Diameter (mm)	150	200	100	100	100	150	100
Rehabilitation date	1996	1998	1992	2003	1992	1999	2000
Flow	low	No flow	low	medium	Dead end		low
Chlorine residual (free)	0,09	0,06	0,03	0,04	0,04	0,04	0,04
Bisphenol F	100	114	134	1666	38	1050	25
Bisphenol A	17	31	90	<LoQ	62	151	421

- Much higher leaching of BPA and BPF
- No apparent link with pipe and water quality characteristics
- Possible reasons: high S/V, long contact times, **conditions of application**, accelerated ageing with ClO₂

CONCLUSION

- Initial leaching of BPA by new epoxies is low. However one epoxy showed increased leaching increase during first 4 months : are official approval tests (1 week of immersion) adapted?
- Laboratory and field tests indicate that there is no reason to stop using epoxies in storage tanks where S/V <50 cm²/l (initial check of BPA is however recommended)
- On the other hand, the use of epoxies for pipes rehabilitation should be discontinued
- For existing epoxy-coated pipes, maintaining enough chlorine residual to destroy bisphenol A is necessary
- Pending for more information, use of ClO₂ in the presence of epoxies is not recommended

➤ 2,4,6-trichlorophenol frequently detected when epoxy is in contact with chlorinated water and hence represents an organoleptic threat

Thank you

